Уравнение прямой по двум точкам

Данный онлайн калькулятор находит формулы параметрического уравнения прямой и уравнения прямой с угловым коэффициентом по координатам двух точек, принадлежащих прямой.

На этой странице вы найдете два калькулятора, которые строят уравнение прямой по координатам двух точек, принадлежащих этой прямой.

Первый калькулятор находит уравнение прямой с угловым коэффициентом, то есть уравнение в форме y=ax+b. Также он строит график и отдельно выводит угловой коэффициент и значение y в месте пересечения прямой с осью ординат.

Второй калькулятор находит параметрические уравнения прямой, то есть систему уравнений вида x=at+x_0\\y=bt+y_0. Он также строит график и отдельно выводит направляющий вектор.

Формулы расчета можно найти под калькуляторами.

PLANETCALC, Уравнение прямой с угловым коэффициентом по двум точкам

Уравнение прямой с угловым коэффициентом по двум точкам

Первая точка

Вторая точка

Уравнение прямой
 
Угловой коэффициент
 
Значение y в точке пересечения с осью ординат
 
Знаков после запятой: 2



PLANETCALC, Параметрическое уравнение прямой

Параметрическое уравнение прямой

Первая точка

Вторая точка

Параметрическое уравнение для x
 
Параметрическое уравнение для y
 
Направляющий вектор
 
Знаков после запятой: 2

Уравнение прямой с угловым коэффициентом

Найдем уравнение прямой с угловым коэффициентом по двум известным точкам (x_0, y_0) и (x_1, y_1).

Нам надо найти угловой коэффициент a и y координату точки пересечения прямой с осью ординат b.

Мы можем составить следующие уравнения для двух точек относительно a и b
y_0=ax_0+b\\y_1=ax_1+b

Вычитаем первое из второго
y_1 - y_0=ax_1 - ax_0+b - b\\y_1 - y_0=ax_1 - ax_0\\y_1 - y_0=a(x_1 -x_0)

Откуда
a=\frac{y_1 - y_0}{x_1 -x_0}

b можно найти как
b=y-ax
Таким образом, как только мы нашли а, для расчета b достаточно только подставить значения x_0, y_0, a или x_1, y_1, a в выражение выше.

Параметрическое уравнение прямой

Найдем параметрическое уравнение прямой по двум известным точкам (x_0, y_0) и (x_1, y_1).

Нам надо найти компоненты направляющего вектора.
D=\begin{vmatrix}d_1\\d_2\end{vmatrix}=\begin{vmatrix}x_1-x_0\\y_1-y_0\end{vmatrix}
Этот вектор описывает величину и направление воображаемого движения по прямой от первой до второй точки.

Имея направляющий вектор, легко записать параметрические уравнения прямой
x=d_1t+x_0\\y=d_2t+y_0
Обратите внимание, что если t = 0, то x = x_0, y = y_0 и если t = 1, то x = x_1, y = y_1

Ссылка скопирована в буфер обмена
PLANETCALC, Уравнение прямой по двум точкам

Комментарии