homechevron_rightРаботаchevron_rightИнженерные

Обратные гиперболические функции

Расчет обратных гиперболических функций.

Гиперболические функции уже есть, теперь для общности и обратные гиперболические функции. А там, глядишь, и до решения кубических уравнений дойдем.
Итак, калькулятор ниже, описание обратных гиперболических функций — под ним.

Создано на PLANETCALC

Обратные гиперболические функции

Знаков после запятой: 2
Обратные гиперболические функции

Обратный гиперболический синус, гиперболический арксинус, ареасинус:

\operatorname{Arsh}x=\ln(x+\sqrt{x^2+1})

Функция нечетная, строго возрастает. Определена для всей числовой оси. Область значений — вся числовая ось.

Обратный гиперболический косинус, гиперболический арккосинус, ареакосинус

\operatorname{Arch}x=\ln \left( x+\sqrt{x^{2}-1} \right)

Функция строго возрастает. Определена для интервала от единицы включительно до плюс бесконечности. Область значений — от нуля до плюс бесконечности.

Обратный гиперболический тангенс, гиперболический арктангенс, ареатангенс:

\operatorname{Arth}x=\ln\left(\frac{\sqrt{1-x^2}}{1-x}\right)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)

Функция нечетная, строго возрастает. Определена для интервала от минус единицы до плюс единицы исключительно. Область значений — вся числовая ось.

Обратный гиперболический котангенс, гиперболический арккотангенс, ареакотангенс:

\operatorname{Arcth}x=\ln\left(\frac{\sqrt{x^2-1}}{x-1}\right)=\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)

Функция нечетная, строго убывает на интервалах от минус бесконечности до минус единицы исключительно и от единицы исключительно до плюс бесконечности.

Обратный гиперболический секанс, гиперболический арксеканс, ареасеканс:

\operatorname{Arsch}x=\pm\ln\left(\frac{1+\sqrt{1-x^2}}{x}\right)

Функция строго убывает на интервале от нуля до единицы включительно. Функция многозначная, то есть каждому аргументу соответствует два результата — положительный и отрицательный.

Обратный гиперболический косеканс, гиперболический арккосеканс, ареакосеканс:

\operatorname{Arcsch}x=\left\{\begin{array}{l}\ln\left(\frac{1-\sqrt{1+x^2}}{x}\right),\quad x<0 \\ \ln\left(\frac{1+\sqrt{1+x^2}}{x}\right),\quad x>0\end{array}\right

Функция нечетная, строго убывает на интервалах от минус бесконечности до нуля и от нуля до плюс бесконечности.

Комментарии